Interpreting and extracting fuzzy decision rules from fuzzy information systems and their inference

نویسندگان

  • Zheng Pei
  • Germano Resconi
  • Ariën J. van der Wal
  • Keyun Qin
  • Yang Xu
چکیده

Information systems, which contain only crisp data, precise and unique attribute values for all objects, have been widely investigated. Due to the fact that in realworld applications imprecise data are abundant, uncertainty is inherent in real information systems. In this paper, information systems are called fuzzy information systems, and formalized by (objects; attributes; f), in which f is a fuzzy set and expresses some uncertainty between an object and its attribute values. To interpret and extract fuzzy decision rules from fuzzy information systems, the meta-theory based on modal logic proposed by Resconi et al. is modified. The modified meta-theory not only expresses uncertainty between objects and their attributes, but also uncertainty in the process of recognizing fuzzy information systems. In addition, according to perception computing (proposed by Zadeh), granules of fuzzy information systems can be represented by fuzzy decision 0020-0255/$ see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.ins.2005.04.003 * Corresponding author. Tel.: +860 288 7600760; fax: +860 288 7600764. E-mail address: [email protected] (Z. Pei). 1870 Z. Pei et al. / Information Sciences 176 (2006) 1869–1897 rules, so that, fuzzy inference methods can be used to obtain the decision attribute of a new object. Finally, a novel way of combining evidences based on the modified metatheory is introduced, which extends the concept of combining evidences based on Dempster–Shafer theory. 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm

Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...

متن کامل

Forecasting Surgical Outcomes Using a Fuzzy-Based Decision System

Background and objectives: The kidneys of chronic kidney disease (CKD) patients do not have enough function and hemodialysis (HD) is a common procedure for their treatment. HD requires vascular access surgery (VAS) and arteriovenous fistula (AVF) is a low-complication method in VAS. However, different rates of AVF failure have been reported worldwide which can cause repeating s...

متن کامل

Thyroid disorder diagnosis based on Mamdani fuzzy inference system classifier

Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and  do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2006